RAS Earth ScienceГеоэкология. Инженерная геология. Гидрогеология. Геокриология Environmental Geoscience

  • ISSN (Print) 0869-7809
  • ISSN (Online) 3034-6401

DEFORMATIONS OF BUILDINGS ON FROZEN SALINE SOILS DUE TO CLIMATE CHANGE (THE CASE OF AMDERMA VILLAGE, RUSSIA)

PII
10.31857/S0869780923040021-1
DOI
10.31857/S0869780923040021
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
29-39
Abstract
To date, there is no comprehensive geotechnical monitoring of pile foundations for residential and industrial buildings in Russian regions located in the permafrost zone and, accordingly, there is no reliable information about which part of them annually undergoes deformations caused by changes in geocryological conditions. This study presents the results of fieldwork on inspection of buildings in Amderma village (Zapolyarny district of the Nenets Autonomous Okrug, the North-East of the European part of Russia, part of the Arctic zone of the Russian Federation). The article presents the main reasons for the deformation of buildings in Amderma. Data were collected on climatic and permafrost conditions and their dynamics, construction features and the current state of engineering structures of Amderma. Based on studies of engineering structures, a general description of the buildings is given. It was identified that in 2021, 59% of the total number of buildings were deformed, of which 80% were wooden, 46% brick and concrete, and 31% buildings made of light structures. Thus, only 40% of the heat-generating facilities in Amderma are not deformed. The main factors of foundation deformations are identified: soil salinity; watering underground or directly near the building; thermokarst in the building area; coastal processes; rise in temperature due to climate change or creep in the base soil. The results of the study made it possible to fill in local information “gaps” for the Arctic coast of the Nenets Autonomous Okrug in the range of works devoted to the problem of buildings and structures deformations. The new results obtained can be integrated with other similar studies.
Keywords
<i>многолетняя мерзлота</i> <i>геокриологические риски</i> <i>засоленные мерзлые грунты</i> <i>изменение климата</i> <i>Арктическая зона Российской Федерации</i>
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Брушков А.В. Засоленные мерзлые породы Арктического побережья, их происхождение и свойства. М.: Изд-во МГУ, 1998.
  2. 2. Булыгина О.Н., Разуваев В.Н., Трофименко Л.Т., Швец Н.В. Описание массива данных среднемесячной температуры воздуха на станциях России. URL: http://meteo.ru/data/156-temperature
  3. 3. Велли Ю.Я. Исследования засоленных вечномерзлых грунтов Арктического побережья (обзор) / Ред. С.С. Вялов. М.: Наука, 1990. С. 9–20.
  4. 4. Карпенко Ф.С., Кутергин В.Н., Фролов С.И., Собин Р.В. Влияние на прочность глинистых грунтов изменений свойств гидратных пленок при температурных воздействиях // Геоэкология. 2021. № 1. С. 69–78.
  5. 5. Карпенко Ф.С., Кутергин В.Н., Дернова Е.О., Осокин А.А. Методы исследования свойств мерзлых грунтов и прогноза их изменения // Геоэкология. 2022. № 2. С. 80–87.
  6. 6. Карта плиоцен-четвертичных образований: R-41 (Амдерма). Государственная геологическая карта Российской Федерации. Третье поколение. Карта плиоцен-четвертичных образований. Южно-Карская серия, масштаб: 1 : 1000000, серия: Южно-Карская, составлена: ОАО МАГЭ, ФГБУ “ВСЕГЕИ”, 2008 г., редактор(ы): Лопатин Б.Г.
  7. 7. Маслаков А.А., Кузякин Л.П., Комова Н.Н. Динамика развития термоцирка, вмещающего залежь пластового льда, вблизи села Лаврентия (Чукотский АО) за 2018–2021 гг. // Арктика и Антарктика. 2021. № 4. С. 32–46. https://doi.org/10.7256/2453-8922.2021.4.37225
  8. 8. Проект (внесение изменений) генерального плана муниципального образования “поселок Амдерма” Ненецкого автономного округа. Пояснительная записка. Агентство по развитию территорий Geonika. Омск, 2017. 54 с. https://pandia.ru/text/81/533/67586.php
  9. 9. Рекомендации по наблюдению за состоянием грунтов оснований и фундаментов зданий и сооружений, возводимых на вечномерзлых грунтах. НИИОСП. М.: Стройиздат, 1982. https://files.stroyinf.ru/Data2/1/4293793/4293793784.pdf
  10. 10. Руководство по наблюдениям за деформациями оснований и фундаментов зданий и сооружений. НИИОСП. М.: Стройиздат, 1975. https://files.stroyinf.ru/Data2/1/4293826/4293826952.pdf
  11. 11. Тумской В.Е., Торговкин Н.В., Романис Т.В. Термоцирки Якутии // Рельеф и четвертичные образования Арктики, Субарктики и Северо-Запада России. 2021. № 8. URL: https://cyberleninka.ru/article/n/termotsirki-yakutii (дата обращения: 12.04.2023).
  12. 12. Badina S.V. Estimation of the value of buildings and structures in the context of permafrost degradation: The case of the Russian Arctic // Polar Science. 2021. V. 29. Iss. 100730. https://doi.org/10.1016/j.polar.2021.100730
  13. 13. Biggar K., Sego D. The strength and deformation behaviour of model adfreeze and grouted piles in saline frozen soils // Canadian Geotechnical Journal. 2011. V. 30. P. 319–337. https://doi.org/10.1139/t93-027
  14. 14. Gilbert G.L., Instanes A., Sinitsyn A.O., Aalberg A. Characterization of two sites for geotechnical testing in permafrost: Longyearbyen, Svalbard [J] // AIMS Geosciences. 2019. V. 5 (4). P. 868–885. https://doi.org/10.3934/geosci.2019.4.868
  15. 15. Hivon E.G., Sego D. Strength of frozen saline soils // Canadian Geotechnical Journal. 1995. V. 32. P. 336–354. https://doi.org/10.1139/t95-034
  16. 16. Hjort J., Karjalainen O., Aalto J. et al. Degrading permafrost puts Arctic infrastructure at risk by midcentury // Nature communications. 2018. V. 9 (1). Iss. 5147.
  17. 17. Melnikov V.P., Osipov V.I., Brouchkov A.V. et al. Climate warming and permafrost thaw in the Russian Arctic: potential economic impacts on public infrastructure by 2050 // Natural Hazards. 2022. V. 112. P. 231–251.
  18. 18. Miller D.L., Johnson L.A. Pile settlement in saline permafrost: a case history. // Proceedings, 5th Canadian Permafrost Conference. Quebec, Que., 1990. P. 371–378.
  19. 19. Sinitsyn A., Løset S. Strength of frozen saline silt under triaxial compression with high strain rate // Soil Mechanics and Foundation Engineering. 2011. V. 48. https://doi.org/10.1007/s11204-011-9148-2
  20. 20. Streletskiy D.A., Suter L., Shiklomanov N.I. et al. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost // Environmental Research Letters. 2019. V. 14 (2). Iss. 025003.
  21. 21. Tavakoli S., Gilbert G., Kydland L.A.O., Frauenfelder R., Forsberg C.S. Geoelectrical properties of saline permafrost soil in the Adventdalen valley of Svalbard (Norway), constrained with in-situ well data // J. of Applied Geophysics. 2021. V. 195. Iss. 104497. https://doi.org/10.1016/j.jappgeo.2021.104497
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library