RAS Earth ScienceГеоэкология. Инженерная геология. Гидрогеология. Геокриология Environmental Geoscience

  • ISSN (Print) 0869-7809
  • ISSN (Online) 3034-6401

GEOFILTRATION MODELING OF WATER FLOWS TO PRODUCED PRIMARY DIAMOND DEPOSITS AND INJECTION IN ASSOCIATED AREAS

PII
10.31857/S0869780923060097-1
DOI
10.31857/S0869780923060097
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
71-78
Abstract
Safe development of primary diamond deposits in Western Yakutia requires constant monitoring of the hydrogeological regime of the exposed aquifer complexes within the quarry and mine fields of the deposits, as well as in the adjacent areas of drainage water injection. Over the entire period of development of the Alakit-Markhinsky, Daldynsky, Mirninsky and Nakynsky kimberlitic fields, about 400 million m3 of highly mineralized drainage water from quarries and mines were involved in the pumping-injection process. Complex cryohydrogeological conditions of the territory, i.e., lithological-facial specifics, continuous distribution of permafrost, structural confinement of kimberlite fields, fault-block structure of individual pipes, influence the dynamics of occurring changes and make the cryohydrogeological conditions of each individual pipe unique and having no complete analogues. In order to predict successfully and implement subsequently technical solutions aimed at controlling inflows of all types formed within mine and quarry fields, the Yakutniproalmaz Institute elaborated a program for the development, constant maintenance and updating of hydrogeological “digital twins” of all key mining deposits. The developed models take into account the influence of both natural factors and the applied schemes for opening and draining deposits, which impose their own limitations. The filtration problem was solved out using the licensed program FEFLOW, which performs modeling of hydrogeological conditions by the finite element method in a multilayer strata for areas of arbitrary configuration with boundary conditions of type I, II, III changing according to the known law in the presence of filtration heterogeneities in plan and section, as well as vertical filtration. The creation and constant updating of permanent digital models made it possible not only to acquire a modern tool for forecasting water inflows, but also helped to improve the planning process in terms of drilling drainage and injection wells, purchasing pumping equipment, etc. Deviation of predicted values from those actually observed within the short-term forecast for the period of use 2021–2023 ranged from 5 to 10%.
Keywords
<i>гидрогеологическое моделирование</i> <i>кимберлитовое поле</i> <i>депрессионная воронка</i> <i>природные рассолы</i> <i>участки закачки</i>
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
13

References

  1. 1. Гавич И.К. Основы гидрогеологической стратификации и обработки информации. М.: МГРИ, 1982. 79 с.
  2. 2. Гидрогеология СССР. Т. XX. Якутская АССР. М.: Недра, 1970. 384 с.
  3. 3. Дроздов А.В., Иост Н.А., Лобанов В.В. Криогидрогеология алмазных месторождений Западной Якутии. Иркутск: Изд-во ИГТУ, 2008. 507 с.
  4. 4. Климовский И.В., Готовцев С.П. Криолитозона Якутской алмазоносной провинции. Новосибирск: Наука, 1994. 167 с.
  5. 5. Климовский И.В., Готовцев С.П., Шепелев В.В. Гидрогеокриологические условия полигона подземного захоронения дренажных вод трубки “Удачная” // Криосфера Земли. 2002. Т. VI. № 3. С. 45–50.
  6. 6. Колганов В.Ф., Акишев А.Н., Дроздов А.В. Горно-геологические особенности коренных месторождений алмазов Якутии. Мирный: Мирнинская типография, 2013. 568 с.
  7. 7. Янников А.М. Гидрогеология Мирнинского кимберлитового поля. Мирный: Изд-во ЗЯНЦ/ЯНА, 2021. 240 с.
  8. 8. Янников А.М., Брычаев Н.М. Использование природно-техногенных несквозных таликов в качестве резервных источников водоснабжения (на примере участка долины реки Сытыкан, Республика Саха (Якутия)) // Вестник Воронежского государственного университета. Сер. Геология. 2022. № 4. С. 118–126. https://doi.org/10.17308/geology/1609-0691/2022/4/118-126
  9. 9. Янников А.М., Зырянов И.В., Корепанов А.Ю., Стручкова А.С. Динамика и прогноз изменения гидродинамического режима нижнекембрийского водоносного комплекса в пределах Далдынской флексуры // Горный информационно-аналитический бюллетень (научно-технический журнал). 2022. № 9. С. 60–73. https://doi.org/10.25018/02361493_2022_9_0_60
  10. 10. Bidwell V.J. Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics // Mathematics and Computers in Simulation. 2005. V. 69. Iss. 1–2. P. 12–20. https://doi.org/10.1016/j.matcom.2005.02.023
  11. 11. Pouladi B., Bour O., Longuevergne L., Bernardie J. de La, Simon N. Modelling borehole flows from Distributed Temperature Sensing data to monitor groundwater dynamics in fractured media // J. of Hydrology. 2021. V. 598. № 126450. https://doi.org/10.1016/j.jhydrol.2021.126450
  12. 12. Zhao C., Wang Y., Chen X., Li B. Simulation of the effects of groundwater level on vegetation change by combining FEFLOW software // Ecological Modelling. 2005. V. 187. Iss. 2–3, pp. 341–351. https://doi.org/10.1016/j.ecolmodel.2004.10.019
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library