- Код статьи
- 10.31857/S0869780923060115-1
- DOI
- 10.31857/S0869780923060115
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 6
- Страницы
- 4-15
- Аннотация
- Вопрос оценки достоверности инженерно-геологических моделей до сих пор недостаточно проработан в российской практике. Существенно большее внимание уделено методологии оценки достоверности и качества моделей в области геологии нефти и газа. Сопоставление этих методик с методологией оценки качества моделей машинного обучения показало сходство принципов и подходов, а следовательно, калибровка алгоритмов инженерно-геологического моделирования может выполняться с использованием инструментов оценки качества моделей машинного обучения. В статье описан опыт построения стратиграфо-генетической модели с использованием различных алгоритмических подходов с проведением количественной оценки достоверности моделирования на основе метрик машинного обучения. Показано, что задача построения трехмерной геологической модели может быть рассмотрена и как задача мультиклассовой классификации, и как задача регрессии, а предложенный подход сводит задачу разработки и калибровки алгоритмов к минимизации функции ошибок и позволяет отойти от субъективной оценки качества. Предложен показатель погрешности стратиграфо-генетической модели на основе расчета средних абсолютных ошибок и сопоставления с данными контрольной выборки. Отмечено, что предложенные подходы применимы при тестировании методологий инженерно-геологического моделирования в широком смысле, при этом наиболее сложна проверка прогнозных моделей любого вида. Сделан вывод о необходимости интенсификации разработки и наполнения баз инженерно-геологических данных, что позволит осуществить переход от субъективной экспертной оценки к применению современных подходов к моделированию сложно формализуемых сущностей и явлений.
- Ключевые слова
- <i>машинное обучение</i> <i>инженерно-геологическая модель</i> <i>оценка качества моделей</i> <i>кросс-валидация</i> <i>трехмерное инженерно-геологическое моделирование</i>
- Дата публикации
- 19.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 6
Библиография
- 1. Болдырев Г.Г. Трехмерное моделирование и визуализация данных инженерно-геологических изысканий. Состояние вопроса и практическая реализация // Инженерные изыскания. 2022. Т. XVI. № 1. С. 8–26.
- 2. Геологический атлас Москвы (в 10 томах с пояснительной запиской). Масштаб 1:10 000 / Под ред. А.В. Антипова. М: Изд-во ГУП “Мосгоргеотрест”, 2012.
- 3. Гулин В.В. Методы снижения размерности признакового описания документов в задаче классификации текстов // Вестник Московского энергетического института. 2013. № 2. С. 115–121.
- 4. Жидков Р.Ю., Абакумова Н.В., Рекун В.С. Применение комплексного ретроспективного анализа при определении конфигурации массивов техногенных грунтов на примере г. Москвы // Инженерная геология. 2023. Т. ХVIII. № 1. С. 18–34.
- 5. Закревский К.Е., Майсюк Д.М., Сыртланов В.Р. Оценка качества 3D моделей. М.: ООО “ИПЦ “Маска”, 2008. 272 с.
- 6. Закревский К.Е., Попов В.Л. История развития трехмерного геологического моделирования как метода изучения залежей нефти и газа // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. № 5. С. 89–100.
- 7. Королев В.А. О задачах цифровизации и искусственного интеллекта в инженерной геологии // Инженерная геология. 2021. Т. ХVI. № 1. С. 10–23.
- 8. Левянт В.Б., Ампилов Ю.П., Глоговский В.М. и др. Методические рекомендации по использованию данных сейсморазведки (2D, 3D) для подсчета запасов нефти и газа. М.: Министерство природных ресурсов. ОАО “Центральная геофизическая экспедиция”, 2006. 39 с.
- 9. Михайличенко А.А. Аналитический обзор методов оценки качества алгоритмов классификации в задачах машинного обучения // Вестник Адыгейского государственного университета. Сер. 4: Естественно-математические и технические науки. 2022. № 4 (311). С. 52–59.
- 10. Технология трехмерного моделирования геологической среды и ее апробация на объектах жилищного фонда города Москвы по программе реновации // 75 лет инженерных изысканий в Москве / Под ред. А.Ю. Серова и др. Тверь: Талан Групп, 2019. С. 185–189.
- 11. Трофимов В.Т., Королев В.А. О фундаментальных аспектах генетического подхода к изучению грунтов // Инженерная геология. 2019. Т. ХIV. № 1. С. 8–19.
- 12. Шепета Д.А., Головин Е.Н., Иванова М.С. Метрики качества алгоритмов машинного обучения в задачах мультиклассификации // Научная сессия ГУАП: сб. докладов научной сессии, посв. Всемирному дню авиации и космонавтики. В 3-х частях, Санкт-Петербург, 08–12 апреля 2019 г. Часть II. СПб: ГУАП, 2019. С. 278–281.
- 13. Box G.E.P. Robustness in the Strategy of Scientific Model Building / R.L. Launer, G.N. Wilkinson (ed.) // Robustness in Statistics – Academic Press. 1979. P. 201–236.
- 14. Baynes F.J., Parry S. Guidelines for the development and application of engineering geological models on projects. International Association for Engineering Geology and the Environment (IAEG) Commission 25 Publication № 1. 2022. 129 pp.
- 15. Geron A. Hands-On Machine Learning with Scikit-Learn and TensorFlow, Sebastopol: OREILLY. 2019. 548 pp.
- 16. Tsai W.P., Feng D., Pan M., et al. From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling // Nature Communications. 2021. V. 12 (1). P. 1–13.