RAS Earth ScienceГеоэкология. Инженерная геология. Гидрогеология. Геокриология Environmental Geoscience

  • ISSN (Print) 0869-7809
  • ISSN (Online) 3034-6401

The impact of climate change on morphological patterns of river floodplains in cryolithozone

PII
10.31857/S0869780924040042-1
DOI
10.31857/S0869780924040042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
38-49
Abstract
Fluvial processes are highly variable and their dynamics under the influence of modern climate change are of both scientific and practical interest. The present work is an attempt to assess the impact of the modern climate change on the morphological pattern development in cryolithozone flood plains using modelling based on the methods of mathematical morphology of landscapes. The flood plains are territories of free channel meandering with topography formed by fluvial processes at different stages of development; so they represent a complex “patchwork” landscape morphological pattern occurring in the dynamic balance state. Our research involves fragments of the flood plains, for which there were two survey dates with a fairly large interval between them (about 50 years). As a climate change characteristic, the trends of surface air temperature anomalies for the same period (1956—2019) were calculated. An analysis of the calculated trends in surface temperature anomalies showed their heterogeneity both by seasons and by location, with a steady increase in surface temperature in general over the studied period. For all key sites, the mathematical model of the landscape morphological pattern of alluvial plains was tested. The analysis shows the correspondence of empirical data to theoretical ones, which allows us to obtain the model parameters to assess the change in the morphological pattern under the influence of climate change. It was suggested that climate change may lead to a change of the parameters of the corresponding distribution for the model variables due to the violation of dynamic balance. This statement was tested using the Smirnov test for two independent samples. The study of the relationship between distribution parameters and temperature trends includes assessing the correlation between them. Our analysis showed that the influence of modern temperature changes on the development of the morphological pattern of the flood plains over the past 40–50 years is manifested in a change of the distribution parameters for the forming flood plain segments, but it is not significant enough to change greatly the statistical distributions in the mathematical model of the morphological pattern of floodplains in general.
Keywords
математическая модель морфологическая структура приземная температура критерий Смирнова пойменный сегмент стрела сегмента космические снимки флювиальные процессы
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. Алексеевский Н.И., Магрицкий Д.В., Михайлов В.Н. Антропогенные и естественные изменения гидрологических ограничений для природопользования в дельтах рек Российской Арктики // Вод. хоз-во России. 2015. № 1. С. 14—31.
  2. 2. Викторов А.С. Динамическое равновесие в морфологической структуре ландшафтов // Вопросы географии. № 138. Горизонты ландшафтоведения. 2014. С. 123—137.
  3. 3. Викторов А.С. Математическая морфология ландшафта. М.: Тратек, 1998. 191 с.
  4. 4. Викторов А.С. Модель возрастной дифференциации аллювиальных равнин // Геоэкология. 2007. №4. С. 302-309.
  5. 5. Викторов А.С. Основные проблемы математической морфологии ландшафта. М.: Наука, 2006. 252 с.
  6. 6. Викторов А.С., Капралова В.Н., Орлов Т.В., Трапезникова О.Н. и др. Математическая морфология ландшафтов криолитозоны. М.: РУДН, 2016. 232 с.
  7. 7. Георгиевский В.Ю., Грек Е.А., Грек Е.Н. и др. Оценка современных изменений максимального стока рек России // Метеорология и гидрология. 2019. № 11. С. 46-55.
  8. 8. Маккавеев Н.И., Чалов Р.С. Русловые процессы. М.: Изд-во МГУ, 1986. 263 с.
  9. 9. Панин А., Сидорчук А., Чернов А. Основные этапы формирования пойм равнинных рек Северной Евразии // Геоморфология. 2011. № 3. С. 20-31.
  10. 10. Попов И.В. Методологические основы гидроморфологической теории руслового процесса. Избранные труды. СПб.: Нестор-История, 2012. 304 с.
  11. 11. Смирнов Н.В. Оценка расхождения между эмпирическими кривыми распределения в двух независимых выборках // Бюллетень МГУ, сер. А. 1939. Т. 2. №2. С. 3—14.
  12. 12. Фролова Н.Л., Магрицкий Д.В., Киреева М.Б., Григорьев В.Ю. и др. Сток рек России при происходящих и прогнозируемых изменениях климата: обзор публикаций. 1. Оценка изменений водного режима рек России по данным наблюдений // Водные ресурсы. Т. 49. №3. С. 251—269. https://doi.org/10.31857/S032105962203004X.
  13. 13. Чалов Р.С. Географические исследования русловых процессов. М.: Изд-во МГУ, 1979. 232 с.
  14. 14. Boyin Huang, Peter W. Thorne, Viva F. Banzon et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [indicate subset used]. NOAA National Centers for Environmental Information. 2017. https://doi.org/10.7289/V5T72FNM
  15. 15. IPCC, 2014: Climate Change 2014: Synthesis Report.
  16. 16. Joung R.W. The patterns of some meandering valleys in New South Wales // Austral. Geogr. 1970. 11. No 3. P. 269—277.
  17. 17. Kasvi E., Vaaja M., Kaartinen H., Kukko A. et al. Sub-bend scale flow–sediment interaction of meander bends — A combined approach of field observations, close-range remote sensing and computational modelling // Geomorphology. 2015. V. 238. P.119-134. https://doi.org/10.1016/j.geomorph.2015.01.039
  18. 18. Lotsari E., Hackney C., Salmela J., Kasvi E. et al. Sub‐arctic river bank dynamics and driving processes during the open‐channel flow period // Earth Surface Processes and Landforms. 2019. https://doi.org/10.1002/esp.4796.Peschke, 1973
  19. 19. Menne M.J., Williams, C.N., Gleason, B.E. et al. The Global Historical Climatology Network Monthly Temperature Dataset, Ver. 4 // Journal of Climate. 2022. 31(24): 9835—9854. https://journals.ametsoc.org/view/journals/clim/31/24/ jcli-d-18-0094.1.xml
  20. 20. NOAA National Centers for Environmental information. Climate at a Glance: Global Time Series, publ. July 2016. [Electronic resource]. http://www.ncdc.noaa.gov/cag/time-series/.
  21. 21. Peschke G. Zur Anwendbarkeit statistischer Modelle fur die Untersuchung des Maanderproblems // Acta Hydrophys. 1973. 17. No 2-3. P. 235—247.
  22. 22. Rotnicki K. Retrodiction of palaedischarges of meandering and sinuous rivers and its palaeoclimatic implications // Temperate Palaeohydrology. Chichester, Wiley. 1991. Р. 431–470.
  23. 23. Shiklomanov A.I., Lammers R.B. Changing discharge patterns of high-latitude rivers // Climate Vulnerability: Understanding and Addressing Threats to Essential Resources. Elsevier. 2013. P. 161—175.
  24. 24. Sylvester Z., Durkin P., Covault J.A. High curvatures drive river meandering // Geology. 2019. 47 (3). P. 263—266. https://doi.org/10.1130/G45608.1
  25. 25. Sylvester Z., Durkin P.R., Hubbard S.M., Mohrig D. Autogenic translation and counter point bar deposition in meandering rivers // GSA Bulletin. 2021. 133(11-12):2439-2456. https://doi.org/10.1130/B35829.1
  26. 26. Victorov A., Archipova M., Trapeznikova O. Dynamic balance of the landscape morphological pattern of alluvial plains: the quantitative aspect // Proc. of the 20th Int. Multidisciplinary Scientific GeoConference SGEM-2020, 18-24 August, 2020. V. 20, book 2.2. P. 207—214. https://doi.org/10.5593/sgem2020/2.2/s10.025
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library