- PII
- S0869780925030074-1
- DOI
- 10.31857/S0869780925030074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 3
- Pages
- 86-100
- Abstract
- The article discusses modern technologies for assessing soil composition indicators based on hyperspectral satellite survey data, and critically analyzes the possibility of using hyperspectral data to improve the informativeness of engineering geological studies. The features of available hyperspectral data and processing algorithms are reviewed. The main limitations related to the influence of vegetation cover, terrain, and spatial resolution are indicated. It is shown that, considering existing constraints and features, hyperspectral data can be used to estimate soil moisture, organic matter content, and mineral and granulometric composition. The necessity of developing a domestic soil spectral library linked to GOST 25100 and adapting processing algorithms to national standards is emphasized.
- Keywords
- дистанционное зондирование гиперспектральные снимки грунт спектроскопия грунтов Hyperion PRISMA DESIS EnMAP влажность минеральный состав
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. Баборыкин М.Ю., Жидиляева Е.В., Погосян А.Г. Дешифрирование материалов аэрокосмической съемки для анализа инженерно-геологических условий в общем алгоритме изысканий на линейных объектах // Инженерные изыскания. 2014. № 9—10. С. 13—21.
- 2. Грубина П.Г., Савин И.Ю. Информативность данных инфракрасного диапазона съемки для детектирования свойств пахотных почв // Вестник РУДН. Серия: Агрономия и животноводство. 2023. № 2(18). С. 197—212.
- 3. Корниенко С.Г. Информативность космических снимков сверхвысокого разрешения в задачах мониторинга влажности тундрового покрова // Актуальные проблемы нефти и газа. 2020. № 2(29). С. 82—95.
- 4. Кринов Е.Л. Спектральная отражательная способность природных образований. М: АН СССР, 1947. 273 с.
- 5. Кронберг П. Дистанционное изучение Земли. Основы и методы дистанционных исследований в геологии: Пер. с нем. М: Мир, 1988. 352 с.
- 6. Никифорова Н.Н., Калиничева С.В., Плотников Н.А. и др. Анализ влажности грунтов с использованием дистанционных и наземных исследований // География и краеведение в Якутии и сопредельных территориях Сибири и Дальнего Востока / Ред. колл. Пахомова Л.С. и др. Якутск: СВФУ, 2022. С. 103—106.
- 7. Пронина Л.А., Гмыря А.А., Хорошавина А.В. Использование лазерного сканирования при инженерно-геодезических изысканиях для целей проектирования реконструкции автомобильных дорог // Электронный научно-методический журнал Омского ГАУ. 2019. № 4. С. 10—14. http://e-journal.omgau.ru/images/issues/2019/4/00772.pdf
- 8. Прудникова Е.Ю., Савин И.Ю., Виндекер Г.В. Спектральная отражательная способность открытой поверхности пахотных почв как основа дешифрирования их свойств по данным дистанционного зондирования // Матер. II Всерос. научной конф. с междунар. участием “Применение средств дистанционного зондирования Земли в сельском хозяйстве”. СПб.: ФГБНУ АФИ, 2018. С. 113—119.
- 9. Райкунов Г.Г., Щербаков В.Л., Турченко С.И., Брусничкина Н.А. Гиперспектральное дистанционное зондирование в геологическом картировании. М.: ФИЗМАТЛИТ, 2014. 136 с.
- 10. Савин И.Ю. Перспективы развития картографирования и мониторинга почв на основе интерполяции точечных данных и дистанционных методов // Вестн. Моск. унта. Сер. 17. Почвоведение. 2022. № 2. С. 13—19.
- 11. Савин И.Ю., Виндекер Г.В. Некоторые особенности использования оптических свойств поверхности почв для определения их влажности // Почвоведение. 2021. № 7. C. 806–814.
- 12. Савин И.Ю., Шишкин М.А., Шарычев Д.В. Особенности спектральной отражательной способности фракций образцов почв размером от 20 до 5000 мкм // Бюллетень Почвенного института им. В.В. Докучаева. 2022. № 112. C. 24—47.
- 13. Тронин А.А., Горный В.И., Крицук С.Г., Латыпов И.Ш. Спектральные методы дистанционного зондирования в геологии. Обзор // Современные проблемы дистанционного зондирования Земли из космоса. 2011. Т. 8. № 4. C. 23—26.
- 14. Прудникова Е.Ю., Савин И.Ю. Исследование оптических свойств открытой поверхности почв // Оптический журнал. 2016. Т. 83 № 10. С. 79—86.
- 15. Abrams M., Yamaguchi Y., Crippen R. ASTER Global DEM (GDEM). Ver. 3 // The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. V. B4-2022 (XLIII-B4-2022). P. 593—598.
- 16. Alonso K., Bachmann M., Burch K., Carmona E. et al. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) // Sensors. 2019. V. 19(20): 4471. P. 1—44. https://doi.org/10.3390/s19204471
- 17. Alonso K., Bachmann M., Burch K., Carmona, E. et al. Statistical classification for assessing PRISMA hyperspectral potential for agricultural land use // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013. V. 6(2). P. 615—625. https://doi.org/10.1109/JSTARS.2013.2255981
- 18. Baumgardner M.F., Silva L.F., Biehl L.L., Stoner E.R. Reflectance properties of soils // Advances in agronomy. 1986. V. 38. P. 1—44.
- 19. Bayer A.D., Bachmann M., Rogge D., et al. Combining Field and Imaging Spectroscopy to Map Soil Organic Carbon in a Semiarid Environment // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. V. 9(9). P. 3997—4010. https://doi.org/10.1109/JSTARS.2016.2585674
- 20. Ben-Dor, E., Chabrillat, S., Demattê, J.A.M. et al. Using Imaging Spectroscopy to study soil properties // Remote Sensing of Environment. 2009. V. 113. P. 38—55. https://doi.org/10.1016/j.rse.2008.09.019
- 21. Ben-Dor E., Irons J. R., Epema G.F. Soil reflectance // Remote sensing for the earth sciences: Manual of remote sensing. 1999. V. 3(3). P. 111—188.
- 22. Bhargava A., Sachdeva A., Sharma K. et al. Hyperspectral Imaging and Its Applications: A Review // Heliyon. 2024. V. 10(12). P. 1—15.
- 23. Bowers S.A., Hanks R.J. Reflection of radiant energy from soils // Soil Science. 1965. V. 100(2). P. 130—138.
- 24. Castaldi F., Palombo A., Pascucci S. et al. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: A case study using simulated PRISMA data // Remote Sensing. 2015. V. 7(11). P. 15561—15582. https://doi.org/10.3390/rs71115561
- 25. Castaldi F., Palombo A., Santini F. et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon // Remote Sensing of Environment. 2016. V. 179. P. 54—65. https://doi.org/10.1016/j.rse.2016.03.025
- 26. Cierniewski J., Kuśnierek K. Influence of several size properties on soil surface reflectance // Quaestiones Geographicae. 2010. V. 29(1). P. 13—25. https://doi.org/10.2478/v10117-010-0002-9
- 27. Cocks T., Jenssen, R., Stewart A. et al. The HyMapTM airborne hyperspectral sensor: The system, calibration and performance // Proc. of the 1st EARSeL workshop on Imaging Spectroscopy, EARSeL. 1998. P. 37—42.
- 28. Demattê J.A., Dotto A.C., Paiva A.F., Sato M.V. et al. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges // Geoderma. 2019. V. 354. P. 1—21. https://doi.org/10.1016/j.geoderma.2019.05.043
- 29. Eismann M.T. Hyperspectral Remote Sensing. Washington: SPIE, 2012. 748 p.
- 30. Fabre S., Briottet X., Lesaignoux A. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 µm Domain // Sensors. 2015. V. 15(2). P. 3262—3281.
- 31. Ge W., Cheng Q., Jing L., Chen Y. et al. Mineral mapping in the western Kunlun Mountains using Tiangong-1 hyperspectral imagery // IOP Conference Series: Earth and Environmental Science. V. 34(1). 2016. P. 1—6.
- 32. Gersman R., Ben-Dor E., Beyth M. et al. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea // International Journal of Remote Sensing. 2008. V. 29(13). P. 3911—3936. https://doi.org/10.1080/01431160701874587
- 33. Gomez C., Lagacherie P. Mapping of Primary Soil Properties Using Optical Visible and Near Infrared (Vis-NIR) Remote Sensing // Land surface remote sensing in agriculture and forest, 2016. P. 1—35. https://doi.org/10.1016/B978-1-78548-103-1.50001-7
- 34. Gomez C., Lagacherie P., Coulouma G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data // Geoderma. 2012. V. 189. P. 176—185.
- 35. Gomez C., Viscarra Rossel R.A., McBratney A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study // Geoderma. 2008. V. 146(3—4). P. 403—411.
- 36. Goswami C., Singh N.J., Handique B.K. Hyperspectral Spectroscopic Study of Soil Properties. A Review // International Journal of Plant & Soil Science. 2020. V. 32(7). P. 14—25. https://doi.org/10.9734/ijpss/2020/v32i730301
- 37. Guanter L., Kaufmann H., Segl K., Foerster S. et al. The EnMAP spaceborne imaging spectroscopy mission for earth observation // Remote Sensing. 2015. V. 7(7). P. 8830—8857. https://doi.org/10.3390/rs70708830
- 38. Haubrock S.N., Chabrillat S., Lemmnitz C., Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions // International Journal of Remote Sensing. 2008. V. 29(1). P. 3—29. https://doi.org/10.1080/01431160701294695
- 39. Huang J., Yuang Y. Vertical Accuracy Assessment of the ASTER, SRTM, GLO-30, and ATLAS in a Forested Environment // Forests. 2024. V. 15(3): 426. P. 1—19. https://doi.org/10.3390/f15030426
- 40. Hubbard B.E., Crowley J.K. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions // Remote Sensing of Environment. 2005. V. 99(1—2). P. 173—186. https://doi.org/10.1016/j.rse.2005.04.027
- 41. Janik L.J., Merry R. H., Skjemstad J.O. Can mid infrared diffuse reflectance analysis replace soil extractions? // Australian Journal of Experimental Agriculture. 1998. V. 7(38). P. 681—696. https://doi.org/10.1071/EA97144
- 42. Kokaly R.F., Clark R.N., Swayze G.A., Livo K.E. et al. USGS Spectral Library Version 7 (No. 1035). Reston: US Geological Survey. 2017. 68 p. https://doi.org/10.3133/ds1035
- 43. Ladoni M., Bahrami H.A., Alavipanah S.K., Norouzi A.A. Estimating soil organic carbon from soil reflectance: A review // Precision Agriculture. 2010. V. 1(11). P. 82—99.
- 44. Lehnert K., Su Y., Langmuir C. H., Sarbas B., Nohl U. A global geochemical database structure for rocks // Geochemistry, Geophysics, Geosystems. 2000. V. 1(1). P. 1—14. https://doi.org/10.1029/1999GC000026
- 45. Leverington D.W. Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: A case study at Melville Island, Canadian High Arctic // International Journal of Remote Sensing. 2010. V. 31(1). P. 233—260.
- 46. Liu L., Ji M., Buchroithner M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery // Sensors. 2018. V. 18(9): 3169. P. 1—18. https://doi.org/10.3390/s18093169
- 47. Lobell D.B., Asner G.P. Moisture Effects on Soil Reflectance // Soil Science Society of America Journal .2002. V. 66(3). P. 722—727. https://doi.org/10.2136/sssaj2002.7220
- 48. Lopinto E., Ananasso C. The Prisma hyperspectral mission / Lasaponara R. (ed.) // Proc. of the 33rd EARSeL Symposium: Towards Horizon. 2020. V. 12. P. 135—146.
- 49. Marghany M. Remote Sensing and Image Processing in Mineralogy. Oxon: CRC Press, 2022. 300 p.
- 50. Van der Meer F.D., Van der Werff H.M., Van Ruitenbeek F.J. et al. Multiand hyperspectral geologic remote sensing: A review // Int. Journal of Applied Earth Observation and Geoinformation. 2012. V. 14(1). P. 112—128. https://doi.org/10.1016/j.jag.2011.08.002
- 51. Mielke C., Boesche N. K., Rogass C. et al. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: Hyperion/OLI and EnMAP/Sentinel-2 // Remote Sensing. 2014. № 6(8). P. 6790—6816. https://doi.org/10.3390/rs6086790
- 52. Mielke C., Rogass C., Boesche N., Segl K., Altenberger U. EnGeoMAP 2.0-automated hyperspectral mineral identification for the German EnMAP space mission // Remote Sensing. 2016. № 8(2): 127. P. 1—26.
- 53. Milewski R., Chabrillat S., Brell M., Schleicher A.M., Guanter L. Assessment of the 1.75 µm absorption feature for gypsum estimation using laboratory, airand spaceborne hyperspectral sensors // Int. Journal of Applied Earth Observation and Geoinformation. 2019. V. 77. P. 69—83. https://doi.org/10.1016/j.jag.2018.12.012
- 54. Moreira L.C.J., Teixeira A. dos S., Galvão L.S. Laboratory Salinization of Brazilian Alluvial Soils and the Spectral Effects of Gypsum // Remote Sensing. 2014. V. 6(4). P. 2647—2663.
- 55. Okin G.S., Painter T.H. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces // Remote Sensing of Environment. 2004. V. 89(3). P. 272— 280. https://doi.org/10.1016/j.rse.2003.10.008
- 56. Perkins R., Galloway P., Miller R., Graham L. Teledyne’s MUSES mission on the ISS: Enabling flexible and reconfigurable earth observation from space / Tjuatja S., Kunkee D. (ed.) // International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE. 2017. P. 1177—1180. https://doi.org/10.1109/IGARSS.2017.8127167
- 57. Qian S.E. Hyperspectral Satellites, Evolution, and Development History // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021. V. 14. P. 7032—7056. https://doi.org/10.1109/JSTARS.2021.3090256
- 58. Schad P. World Reference Base for Soil Resources — Its fourth edition and its history // Journal of Plant Nutrition and Soil Science. 2023. V. 186(2). P. 151—163. https://doi.org/10.1002/jpln.202200417
- 59. Shepherd K.D., Walsh M.G. Development of Reflectance Spectral Libraries for Characterization of Soil Properties // Soil Science Society of America Journal. 2002. V. 66(3). P. 988—998. https://doi.org/10.2136/sssaj2002.9880
- 60. Signoroni A., Savardi M., Baronio A., Benini S. Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review // Journal of Imaging. 2019. V. 5(5): 52. P. 1—32. https://doi.org/10.3390/jimaging5050052
- 61. Singh A., Gaurav K., Sonkar G.K., Lee C.C. Strategies to Measure Soil Moisture Using Traditional Methods, Automated Sensors, Remote Sensing, and Machine Learning Techniques: Review, Bibliometric Analysis, Applications, Research Findings, and Future Directions // IEEE Access. 2023. V. 11. P. 13605—13635. https://doi.org/10.1109/ACCESS.2023.3243635
- 62. Sowmya V., Soman K.P., Hassaballah M. Hyperspectral image: Fundamentals and advances. In: Hassaballah, M., Hosny, K. Recent Advances in Computer Vision. Studies in Computational Intelligence V. 804. Cham: Springer, 2019. P. 401—424. https://doi.org/10.1007/978-3-030-03000-1_16
- 63. Steinberg A., Chabrillat S., Stevens A., Segl K., Foerster S. Prediction of common surface soil properties based on VisNIR airborne and simulated EnMAP imaging spectroscopy data: Prediction accuracy and influence of spatial resolution // Remote Sensing. 2016. V. 8(7): 613. P. 1—20. https://doi.org/10.3390/rs8070613
- 64. Storch T., Honold H.P., Chabrillat S. et al. The EnMAP imaging spectroscopy mission towards operations // Remote Sensing of Environment. 2023. V. 294: 113632. P. 1—20. https://doi.org/10.1016/j.rse.2023.113632
- 65. Ungar S.G., Pearlman J.S., Mendenhall J.A., Reuter D. Overview of the Earth Observing One (EO-1) mission // IEEE Transactions on Geoscience and Remote Sensing. 2003. V. 41(6). P. 1149—1159. https://doi.org/10.1109/TGRS.2003.815999
- 66. Vasques G.M., Demattê J.A., Rossel R.V. et al. Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths // Geoderma. 2014. V. 223. P. 73—78.
- 67. Rossel R.V., Walvoort D.J., McBratney A.B., Janik L.J., Skjemstad J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties // Geoderma. 2006. V. 131(1—2). P. 59—75. https://doi.org/10.1016/j.geoderma.2014.01.019
- 68. Rossel R.V., Behrens T., Ben-Dor E., Brown D.J. et al. A global spectral library to characterize the world’s soil // Earth-Science Reviews. 2016. V. 155. P. 198—230. https://doi.org/10.1016/j.earscirev.2016.01.012
- 69. Wang J., He T., Lv C., Chen Y., Jian W. Mapping soil organic matter based on land degradation spectral response units using Hyperion images // International Journal of Applied Earth Observation and Geoinformation. 2010. V. 12. P. 171—180. https://doi.org/10.1016/j.jag.2010.01.002
- 70. Xu H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery // Int. Journal of Remote Sensing. 2006. V. 27(14). P. 3025—3033. https://doi.org/10.1080/01431160600589179
- 71. Yokoya N., Chan J. C. W., Segl K. Potential of resolutionenhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images // Remote Sensing. 2016. V. 8(3): 172. P. 1—18. https://doi.org/10.3390/rs8030172