RAS Earth ScienceГеоэкология. Инженерная геология. Гидрогеология. Геокриология Environmental Geoscience

  • ISSN (Print) 0869-7809
  • ISSN (Online) 3034-6401

BEHAVIOR OF HEAVY METALS IN SOIL-CONDENSATE-PLANTS SYSTEM IN THE ULAN-UDE LANDFILLS

PII
10.31857/S0869780923010022-1
DOI
10.31857/S0869780923010022
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
50-58
Abstract
The impact of waste dumps on environmental components, i.e., soil, evaporating soil water (condensate) and plants is studied. It has been revealed that industrial and municipal waste dumps continue to affect significantly the environment after their closure. The behavior of heavy metals (Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg, and Cr) in soils, plants, and condensate in landfill areas and beyond them (the background) has been studied in detail. It has been found out that soils, plants and condensate at landfills are enriched in heavy metals as compared to the background sites. The degree of soil contamination at waste dumps depends on the reclamation stage of the latter. The landfill soils exceed the norms of maximum permissible concentrations for heavy metals by 1.1–90 times. Concentrations of heavy metals in plants exceed the background values from 1.1 to 104 times at all dumps. The maximum level of heavy metals in plants is exceeded for Zn, Cd, Cr. In the condensate sampled at the dumps, MPC is exceeded for Cu, Zn, and Hg. Based on the analysis results, the geochemical rows of heavy metal distribution in different landfill environments were compiled: in plants – Zn > Cu > Cr >Ni > Pb > Cd > Co > Hg > Sn > Bi; in condensate – Zn > Cu > Ni > Cr > Pb > Sn > Co > > Hg > Sb > Cd > Bi; in the soil – Zn > Cr > Cu > Ni > Pb > Co > Sb = Sn > Cd. The distribution of heavy metals in the condensate and plants is similar. In these environments, contribution of Zn and Cu is more than 80%, contribution of Cr, Ni, Pb varies from 1 to 10%; contribution of Cd, Co, Sb, Sn, Bi, Hg is less than 1%. Heavy metals are distributed in soil according to a different pattern: the main contributors are Zn and Cr (their input is more than 50%), then go Ni, Cu, Co, and Pb (their content in soil varies from 1 to 50%), followed by Sb, Sn, and Cd (their content is less than 1%). Total pollution indices (Zc) of the soil, condensate and plants have been calculated for each landfill. Based on Zc, the landfills were grouped in a ranking series, which can form the basis for assigning the sequence of landfill reclamation measures.
Keywords
<i>свалки</i> <i>бытовые и промышленные отходы</i> <i>почва</i> <i>растения</i> <i>конденсат</i>
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
7

References

  1. 1. Виноградов А.П. Полное собрание трудов в 18 т. Геохимия редких и рассеянных элементов в почвах. Т. 4 / Е.М. Коробова (ред.) Л.Д. Виноградова (сост.). М.: РАН, 2021.  298 с.
  2. 2. Гуман О.М. Эколого-геологические условия полигонов твердых бытовых отходов среднего Урала: автореф. дис. докт. геол-мин. наук. Екатеринбург: Уральский государственный горный университет, 2008. 43 с.
  3. 3. Жалсараев Б.Ж., Кутовой А.Н., Цынгуев В.Г. Рентгеновский спектрометр Пат. 2397481, РФ // Б.И. 2010. № 23. 9 с.
  4. 4. Зайцева Т.А. Закономерности изменения микробиоценозов на полигонах депонирования твердых бытовых отходов в процессе деструкции органических веществ: автореф. дис. докт. биол. наук. Пермь: ПГУ, 2006. 36 с.
  5. 5. Корсун О.В. Природа Забайкалья: растения. Чита: Экспресс-издательство, 2009. 512 с.
  6. 6. Куриленко В.В., Подлипский И.И., Осмоловская Н.Г. Эколого-геологическая и биогеохимическая оценка воздействия полигонов бытовых отходов на состояние окружающей среды // Экология и промышленность России. 2012. № 11. С. 28–32.
  7. 7. Реймерс Н.Ф. Экология. Теории, законы, правила, принципы и гипотезы. М.: Россия молодая, 1994. 366 с.
  8. 8. Ринькис Г.Я. Оптимизация минерального питания растений. Рига: Зинанте, 1972. 355 с.
  9. 9. Филиппова Л.А., Юркова И.В. Геохимическое влияние малых свалок на окружающую среду // Известия Сибирского отделения РАЕН. Геология, поиски и разведка рудных месторождений. 2009. № 1 (34). С. 92–106.
  10. 10. Jarvis S.C., Robson A.D. Absorption and Distribution of Copper in Plants with Sufficient or Deficient Supplies // Annals of Botany. 1982. V. 50, № 2. P. 151–160.
  11. 11. Kabata-Pendias A. Trace Elements in Soils and Plants. London, New York: CRC Press, Taylor and Francis Group, Boca Raton, 2011. 505 p.
  12. 12. Schiopu A.-M., Gavrilescu M. Municipal solid waste landfilling and treatment of resulting liquid effluents // Environmental Engineering and Management Journal. 2010. V. 9. № 7. P. 993–1019.
  13. 13. Vaverkova M.D., Adamcova D., Zloch J., Radziemska M. et al. Impact of municipal solid waste landfill on environment – a case study // Journal of Ecological Engineering. 2018. V. 19. Iss. 4. P. 55–68.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library