RAS Earth ScienceГеоэкология. Инженерная геология. Гидрогеология. Геокриология Environmental Geoscience

  • ISSN (Print) 0869-7809
  • ISSN (Online) 3034-6401

ANALYSIS OF THE EXOGENOUS GEOLOGICAL PROCESS DEVELOPMENT BASED ON THE MODELS OF THE MATHEMATICAL MORPHOLOGY OF LANDSCAPES

PII
10.31857/S0869780923060085-1
DOI
10.31857/S0869780923060085
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
16-25
Abstract
The paper aims to show the efficiency of applying the approaches used in the mathematical morphology of landscapes to the analysis of exogenous geological process development. Taking thermokarst plains with fluvial erosion as an example, it is shown that the approaches of the mathematical morphology of landscapes permit analyzing the terrain development under complex conditions of several interacting exogenous geological processes. Thermokarst areas develop under the impact of two interacting processes, i.e., thermokarst and fluvial thermoerosion. They include the following stages: constant generation of new thermokarst foci, constant decrease in the number of the thermokarst foci, when lakes are drained by thermoerosion, constant change in the conditions for the development of new thermokarst foci due to the transformation of the main surface into the khasyrei surface. The approaches of the mathematical morphology of landscapes revealed that each of the two types of surface within the thermokarst plains with fluvial erosion reached a dynamic balance upon the emergence, growth, and drainage of thermokarst lakes. Taking the formation and development of thermal cirques on abrasion shores within the permafrost zone as an example, it is shown that the approaches of the mathematical morphology of landscapes make it possible to analyze a set of processes for thermal cirques development under complex interaction of their foci. Based on the analysis of the mathematical model of the formation and development of thermal cirques, it is shown that in conditions of an abrasion slope that is relatively homogeneous in terms of geological and geocryological conditions, a dynamic balance is reached. It is characterized by stabilizing two parameters: the average density of thermal cirques and the probabilistic distribution of the thermal cirque size along the slope strike. An analytical relationship was obtained between the probabilistic distributions of chord sizes of the forming young landslides and all presented landslides, including partly erased ones by the later landslides; and the relationship between the average statistical forms of landslides along the coastline and the distribution parameters of the chord sizes of the forming young landslides. The obtained regularities were tested at several sites based on remote sensing data.
Keywords
<i>математическая морфология ландшафта</i> <i>термокарст</i> <i>эрозионно-термокарстовые равнины</i> <i>термоцирки</i> <i>криолитозона</i>
Date of publication
19.09.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Аникеев А.В. Провалы и воронки оседания в карстовых районах: механизмы образования, прогноз и оценка риска. М.: РУДН, 2017. 328 с.
  2. 2. Викторов А.С. Математическая морфология ландшафта. М: Тратек, 1998. 220 с.
  3. 3. Викторов А.С. Математические модели ландшафтных рисунков // Изв. ВГО. Т. 124. Вып. 1. 1992. С. 75–83.
  4. 4. Викторов А.С. Моделирование морфологических особенностей абразионных берегов с развитием оползневых процессов в криолитозоне // Геоэкология. 2022. № 6. С. 28–36.
  5. 5. Викторов А.С. Основные проблемы математической морфологии ландшафта. М.: Наука, 2006. 252 с.
  6. 6. Викторов А.С., Капралова В.Н., Орлов Т.В. Развитие модели морфологической структуры эрозионно-термокарстовых равнин на основе использования материалов космической съемки // Исследование Земли из Космоса. 2023. № 3. С. 58–69.
  7. 7. Викторов А.С., Капралова В.Н., Орлов Т.В., Трапезникова О.Н. и др. Математическая морфология ландшафтов криолитозоны. 2016. М.: РУДН, 232 с.
  8. 8. Мельников В.П., Хименков А.Н., Брушков А.В. и др. Криогенные геосистемы: проблемы исследования и моделирования. Новосибирск Академ. Изд-во ГЕО, 2010 390 с.
  9. 9. Новиков В.Н., Федорова Е.В. Разрушение берегов в юго-восточной части Баренцева моря // Вестник МГУ. Сер. 5. География. 1989. № 1. С. 64–68.
  10. 10. Перльштейн Г.З., Павлов А.В., Левашов А.В., Сергеев Д.О. Нетемпературные факторы теплообмена деятельного слоя с атмосферой // Матер. третьей конференции геокриологов России, Москва, 1–3 июня 2005 г. Т. 1. М.: МГУ, 2005. С. 86–91.
  11. 11. Толмачев В.В. Вероятностный подход при оценке устойчивости закарстованных территорий и проектировании противокарстовых мероприятий // Инженерная геология. 1980. № 3. С. 98–107.
  12. 12. Шур Ю.Л. Термокарст (к теплофизическим основам учения о закономерностях развития процесса). М.: Недра, 1977. 80 с.
  13. 13. Aleksyutina D.M., Shabanova N.N., Kokin O.V., Vergun A.P. et al. Monitoring and modelling issues of the thermoabrasive coastal dynamics // IOP Conf. Series: Earth and Environmental Science, 2018. № 193. № 012003.
  14. 14. Belova N.G., Shabanova N.N., Ogorodov S.A., Kamalov A.M. et al. Erosion of permafrost coasts of Kara sea near kharasavey cape, Western Yamal // Earth’s Cryosphere. 2017. T. 21. № 6. C. 73–83.
  15. 15. Belova N.G., Novikova A.V., Günther F., Shabano-va N.N. Spatiotemporal variability of coastal retreat rates at Western Yamal Peninsula, Russia, based on remotely sensed data // J. of Coastal Research. 2020. № 95. P. 367–371.
  16. 16. Daya Sagar B. S. Mathematical Morphology in Geomorphology and GISci. CRC Press, Boca Raton, FL, 2013. 546 p.
  17. 17. Ling F., Zhang T. Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain // J. of Geophysical Research. 2003. 108. 4511. https://doi.org/10.1029/2002JD003014
  18. 18. Ling F., Wu Q., Zhang T., Niu F. Modelling Open-Talik Formation and Permafrost Lateral Thaw under a Thermokarst Lake, Beiluhe Basin, Qinghai-Tibet Plateau // Permafrost and Periglac. Process., 2012. V. 23. № 4. P. 312–321. https://doi.org/10.1002/ppp.1754
  19. 19. Romanovskii N.N., Hubberten H.-W. Results of permafrost modelling of the lowlands and shelf of the Laptev Sea Region // Permafrost and Periglac. Process., 2001. V. 12. № 2. P. 191–202. https://doi.org/10.1002/ppp.387
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library