- PII
- 10.31857/S0869780924050061-1
- DOI
- 10.31857/S0869780924050061
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 5
- Pages
- 58-68
- Abstract
- The rates of leaching of elements from B-Si glass with radionuclide simulators at 90°C after 14 days are reduced by 1–2 orders of magnitude due to the formation of a gel layer on its surface. The stability of glass in water after its contact with bentonite is lower than in distilled water. Alteration of the glass is determined by the diffusion of water into it, exchange of alkalis and protons, hydrolysis and breaking of bonds between atoms in the glass network, appearance of gel, saturation of the solution with silica and alumina, precipitation of secondary phases. Radionuclides remain in the gel layer and only B, alkalis, as well as U and Mo in higher oxidation states accumulate in the solution. A significant proportion of waste simulants in glass leaching products is found in form of colloids.
- Keywords
- радионуклиды имитаторы стекломатрица выщелачивание коллоиды
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 10
References
- 1. Алой А.С., Трофименко А.В., Кольцова Т.И., Никандрова М.В. Физико-химические характеристики остеклованных модельных ВАО ОДЦ ГХК // Радиоактивные отходы. 2018. № 4(5). С. 67–75.
- 2. Болдырев К.А., Мартынов К.В., Крючков Д.В. и др. Численное моделирование выщелачивания алюмофосфатного стекла в статическом режиме в присутствии бентонита // Радиохимия. 2019. T. 61. № 5. С. 427–432.
- 3. Карслоу Г., Егер Д. Теплопроводность твердых тел / Пер. с англ. М.: Наука, 1964. 487 с.
- 4. Лаверов Н.П., Величкин В.И., Омельяненко Б.И., Юдинцев С.В. и др. Изоляция отработавших ядерных материалов: геолого-геохимические основы. М: ИФЗ РАН, 2008. 280 с.
- 5. Мальковский В.И. Перенос техногенных радионуклидов в земной коре. М.: ООО “Сам Полиграфист”, 2020. 190 с.
- 6. Мартынов К.В., Андрющенко Н.Д., Некрасов А.Н., Захарова Е.В. Синтез и выщелачивание боро-содержащих стекол для РАО в условиях глубинного захоронения // Радиоактивные отходы. 2023. № 3 (24). С. 44–64.
- 7. Мартынов К.В., Захарова Е.В. Взаимодействие подземной воды с барьерным бентонитом и фосфатным стеклом, содержащим имитаторы РАО // Вопросы радиационной безопасности. 2019. №3. C. 23–39.
- 8. Ремизов М.Б., Козлов П.В., Логунов М.В. и др. Концептуальные и технические решения по созданию на ПО “Маяк” установок остекловывания текущих и накопленных жидких ВАО // Вопросы радиационной безопасности. 2014. № 3. С. 17–25.
- 9. Толчев А.В., Казанцева Е.Л., Куликов М.А. Динамика взаимодействия “твердое тело – жидкость” при термообработке гидроксида алюминия в дистиллированной воде // Вестник ЮУрГУ. 2012. № 36. С. 29–32.
- 10. Alonso U., Missana T., Fernández A.M., García-Gutiérrez M. Erosion behaviour of raw bentonites under compacted and confined conditions: Relevance of smectite content and clay/water interactions // Applied Geochemistry. 2018. V. 94. P. 11–20.
- 11. Backhouse D.J., Fisher A.J., Neeway J.J. et al. Corrosion of the International Simple Glass under acidic to hyperalkaline conditions // Materials Degradation. 2018. V. 2. 29.
- 12. Birgersson M., Hedström M., Karnland O., Sjöland A. Bentonite buffer: macroscopic performance from nanoscale properties // In Apted M J, Ahm J (eds). Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste. 2nd ed.: Woodhead Publishing. 2017. P. 319–364.
- 13. Cassingham N., Corkhill C.L., Backhouse D.J. et al. The initial dissolution rates of simulated UK Magnox – ThORP blend nuclear waste glass as a function of pH, temperature and waste loading // Mineralogical Magazine. 2015. V. 79(6). P. 1529–1542.
- 14. Damodaran K., Gin S., Narayanasamy S., Delaye J.-M. On the effect of Al on alumino-borosilicate glass chemical durability // npj Materials Degradation. 2023. V. 7: 46.
- 15. Debure M., De Windt L., Frugier P., Gin S. Mechanisms involved in the increase of borosilicate glass alteration by interaction with the Callovian-Oxfordian clayey fraction // Applied Geochemistry. 2018. V. 98. P. 206–220.
- 16. Deissmann G., Haneke K., Filby A., Wiegers R. Dissolution behaviour of HLW glasses under OPERA repository conditions. OPERA-PU-IBR511A. Vlissingen, NL: Opera, 2016. 76 p.
- 17. Fisher A.J., Imran M.N.B., Mann C., Gausse C. et al. The dissolution of UK simulant vitrified high level waste in groundwater solutions // J. of Nuclear Materials. 2020. V. 538: 152245.
- 18. Frolova A.V., Danilov S.S., Vinokurov S.E. Corrosion behavior of some glasses immobilized with REE in simulated mineral solutions // Ceramics Intern. 2022. V. 48. P. 19644–19654.
- 19. Gin S., Abdelouas A., Criscenti L.J., Ebert W.L. et al. An international initiative on long-term behavior of high-level nuclear waste glass // Materials Today. 2013. V. 16. N 6. P. 243–248.
- 20. Gin S., Delaye J.-M., Angeli F., Schuller S. Aqueous alteration of silicate glass: state of knowledge and perspectives // npj Materials Degradation. 2021. V. 5: 42.
- 21. Gin S., Jollivet P., Fournier M., Angeli F., Frugier P. Origin and consequences of silicate glass passivation by surface layers // Nature Communications. 2015. V. 6: 6360.
- 22. Grambow B., Müller R. First-order dissolution rate law and the role of surface layers in glass performance assessment // J. of Nuclear Materials. 2001. V. 298. P. 112–124.
- 23. Harrison M.T. The effect of composition on short- and long-term durability of UK HLW glass // Procedia Materials Science. 2014. V. 7. P. 186–192.
- 24. Honeyman B.D. Colloidal culprits in contamination // Nature. 1999. V. 397. P. 23–24.
- 25. Jantzen C.M., Kaplan D.I., Bibler N.E., Peeler D.K., Plodinec M.J. Performance of a buried radioactive high level waste (HLW) glass after 24 years // J. of Nuclear Materials. 2008. V. 378. P. 244–256.
- 26. Jantzen C.M., Trivelpiece C.L., Crawford C.L. et al. Accelerated leach testing of glass (ALTGLASS): I. Informatics approach to high level waste glass gel formation and aging // Int. J. Appl. Glass. Sci. 2017. V. 8. P. 69–83.
- 27. Johnson L., King F. The effect of the evolution of the environmental conditions on the corrosion evolutionary path in a repository for spent fuel and high-level waste in Opalinus Clay // J. of Nuclear Materials. 2008. V. 379. P. 9–15.
- 28. Jollivet P., Frugier P., Parisot G., Mestre J.P. et al. Effect of clayey groundwater on the dissolution rate of the simulated nuclear waste glass SON68 // J. of Nuclear Materials. 2012. V. 420. P. 508–518.
- 29. Libourel G., Verney-Carron A., Morlok A., Gin S. et al. The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses // C. R. Geoscience. 2011. V. 343. P. 237–245.
- 30. Net Zero Roadmap. A global pathway to keep the 1.5C goal in reach. 2023 Update. Paris: International Energy Agency, 2023. 224 p.
- 31. Ojovan M., Lee W.E. Glassy waste forms for nuclear waste immobilization // Metallurgical and Materials Transactions A. 2011. V. 42A. P. 837–851.
- 32. Poluektov P.P., Schmidt O.V., Kascheev V.A., Ojovan M.I. Modelling aqueous corrosion of nuclear waste phosphate glass // J. of Nuclear Materials. 2017. V. 484. P. 357–366.
- 33. Status and trends in spent fuel and radioactive waste management. Vienna: IAEA, 2022. 88 p.
- 34. Thorpe C.L., Neeway J.J., Pearce C.I., Hand R.J. et al. Forty years of durability assessment of nuclear waste glass by standard methods // npj Materials Degradation. 2021. V. 5: 61.
- 35. Zubekhina B., Burakov B., Shiryaev A., Liu X., Petrov Y. Long-term chemical alteration of 238Pu-doped borosilicate glass in a simulated geological environment with bentonite buffer // Sustainability. 2023. V. 15: 6306.