- PII
- 10.31857/S0869780925010097-1
- DOI
- 10.31857/S0869780925010097
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 1
- Pages
- 87-96
- Abstract
- A hybrid model combining land use regression (LUR) and regression kriging (RK) methods is constructed to assess the variation in spatial pollution of urban topsoil by heavy metals. The environmental monitoring data of nickel and manganese content in the topsoil of the Arctic town Tarko-Sale were used. This hybrid method of modelling topsoil pollution is suitable for all pollutants, for different territories and types of human-induced pollution sources. The use of RK improves the LUR model accuracy: the correlation between test and predicted sets increased by 7 and 17% for nickel and manganese, respectively; and the relative root mean squared error (RRMSE) decreased by 10% for both elements. The results of hybrid modeling of LUR with RK showed that the spatial distribution of manganese and nickel content in topsoil of the city does not depend on city vehicles. This points to the natural origin of manganese and nickel in urban soil in the absence of other pollution sources. The sequential inclusion of different pollution sources in the LUR model is a way to assess the contribution of each of the selected sources to pollution by the selected element. The data from technogenic sources used in the regression model did not show relationship with the pattern of manganese and nickel contamination in the topsoil. The spatial distribution of manganese and nickel in the top layer of soil is controlled rather by natural factors and is not associated with anthropogenic activities. The results of modelling LUR with RK allow us to draw conclusions about the origin of heavy metals in the soil. Previous results based on statistical analysis have shown no association between chromium pollution and anthropogenic sources (roads, industrial areas), and nickel and manganese are also not associated with anthropogenic sources. The sequential inclusion of various sources of pollution makes it possible to evaluate the source contribution to the pollution by certain metal.
- Keywords
- тяжелые металлы верхний слой почвы LUR (land use regression) пространственное распределение гибридное моделирование
- Date of publication
- 19.09.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Антропов К.М., Вараксин А.Н. Оценка загрязнения атмосферного воздуха г. Екатеринбурга диоксидом азота методом Land Use Regression // Экологические системы и приборы. 2011. №8. C. 47-54.
- 2. Буевич А.Г., Сафина А.М., Сергеев А.П. и др. Анализ статистических зависимостей распределения загрязняющих веществ в поверхностном слое почвы урбанизированных территорий с применением математических моделей (LUR метод) // Геоэкология. 2015. №3. С. 268-279.
- 3. Медведев А.Н., Медведев М.А. О применении подхода Land Use Regression для моделирования площадного загрязнения снега при малом количестве точек наблюдения // XI Междунар. конф. «Российские регионы в фокусе перемен». Екатеринбург, 17-19 ноября 2016 г.: сб. докладов. Екатеринбург: Издательство УМЦ УПИ, 2016. Ч. 1. С. 487-494.
- 4. Сергеев А.П., Баглаева Е.М., Субботина И.Е. Загрязнение почв города Тарко-Сале тяжелыми металлами // Геоэкология. 2014. №1. С. 28-36.
- 5. Aguilera I., Sunyer J., Fernandez-Patier R., Hoek G. et al. Estimation of outdoor NOx, NO2 and BTEX exposure in a cohort of pregnant women using land use regression modeling // Environ. Sci. Technol. 2008. V. 42. P. 815-821.
- 6. Brauer M., Hoek G., van Vliet P., Meliefste K. et al. Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems // Epidemiology. 2003. V. 14. P. 228-239.
- 7. Briggs D.J., de Hoogh C., Gulliver J., Wills J. et al. A regression-based method for mapping trafficrelated air pollution: application and testing in four contrasting urban environments // Sci. Total. Environ. 2000. V. 253(1-3). P. 151-167.
- 8. Carr D., von Ehrenstein O., Weiland S., Wagner C. et al. Modeling annual benzene, toluene, NO2, and soot concentrations on the basis of road traffic characteristics // Environ. Res. 2002. V. 90. P. 111-118.
- 9. Hoek G., Beelen R., de Hoogh K., Vienneaue D. et al. A review of land-use regression models to assess spatial variation of outdoor air pollution // Atmos. Environ. 2008. V. 36. P. 4077-4088.
- 10. Kashima S., Yorifuji T., Tsuda T., Doi H. Application of land use regression to regulatory air quality data in Japan // Sci Total Environ. 2009. V. 407(8). P. 3055-3062.
- 11. Liu Y., Song S., Bi C., Zhao J., Xi, D., Su Z. Occurrence, Distribution and Risk Assessment of Mercury in Multimedia of Soil-Dust-Plants in Shanghai, China // Int. J. Environ. Res. Public Health. 2019. V. 16. 3028. https://doi.org/10.3390/ijerph16173028
- 12. Moore D.K., Jerrett M., Mack W.J., Kunzli N. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA // J. Environ. Monitor. 2007. V. 9. P. 246-252.
- 13. Ross Z., English P.B., Scalf R., Gunier R. et al. Nitrogen dioxide prediction in Southern California using land use regression modeling: potential for environmental health analyses // J. Expo. Sci. Environ. Epidemiol. 2006. V. 16. P. 106-114.
- 14. Smith L., Mukerjee S., Gonzales M., Stallings C. et al. Use of GIS and ancillary variables to predict volatile organic compound and nitrogen dioxide levels at unmonitored locations // Atmos. Environ. 2006. V. 40. P. 3773-3787.
- 15. Stedman J., Vincent K., Campbell G., Goodwin J., Downing C. New high resolution maps of estimated background ambient NOx and NO2 concentrations in the U.K. // Atmos. Environ. 1997. V. 31. P. 3591-3602.
- 16. Taylor K. Summarizing multiple aspects of model performance in a single diagram // J. Geophys. Res. 2001. V. 106. P. 7183-7192. https://doi.org/10.1029/2000JD900719