- PII
- S0869780925020071-1
- DOI
- 10.31857/S0869780925020071
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 73-80
- Abstract
- Thermal conductivity of some loose urban soils in Yekaterinburg has been studied using the needle probe method. The studied samples include weathering crusts of granitic and ultramafic rocks, quartz sand and crushed piezoelectric quartz. Humidity and granulometric composition have also been studied. An increase in humidity from 2-3% to 20-25% leads to an increase in thermal conductivity from 0.15-0.3 W m K to 1.2-2.0 W m K. Most samples are characterized by an “S”-shaped dependence of thermal conductivity on humidity, including an initial section of slow growth in thermal conductivity, a section of a faster growth, and a flattening of the dependence as it approaches maximum saturation. For the analytical description of experimental data, the percolation-based effective medium approximation (P-EMA) was used. The approximation error was 0.08-0.26 W m K. The “critical humidity” parameter in the P-EMA approximation determines the position of curve inflection. It has been established that the critical humidity increases with the growth of the finest fraction content, i.e., clay and silty loam. Data on the thermal conductivity of loose urban soils can be used in calculating heat exchange on urban surfaces, for example, in urban heat island studies.
- Keywords
- рыхлые приповерхностные отложения теплопроводность влажность гранулометрический состав перколяция
- Date of publication
- 21.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 11
References
- 1. Грязнов О.Н., Гуляев А.Н., Рубан Н.В. и др. Факторы инженерно-геологических условий города Екатеринбурга // Известия Уральского государственного горного университета. 2015. № 3 (39). С. 5-20.
- 2. Демежко Д.Ю. Геотермический метод реконструкции палеоклимата (на примере Урала). Екатеринбург: Изд-во УрО РАН, 2001. 144 с.
- 3. Alchapar N.L., Correa E.N., Cantón M.A. Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones // Energy and Buildings. 2014. № 69. P. 22-32.
- 4. Chandler T.J. The climate of towns, Ch. 14. Chandler T.J. and Gregory S. (eds.). The Climate of the British. Longman, London, 1976. P. 307-329.
- 5. Ghanbarian B., Daigle H. Thermal conductivity in porous media: Percolation-based effective-medium approximation // Water Resources Research. 2016. № 52 (1). P. 295-314.
- 6. Goward S.N. Thermal behavior of urban landscapes and the urban heat island // Physical Geography. 1981. № 2 (1). P. 19-33.
- 7. Lu S., Ren T., Gong Y., Horton R. An improved model for predicting soil thermal conductivity from water content at room temperature // Soil Science Society of America Journal. 2007. V. 71. № 1. P. 8-14.
- 8. Lu N., Dong Y. Closed-form equation for thermal conductivity of unsaturated soils at room temperature // Journal of Geotechnical and Geoenvironmental Engineering. 2015. V. 141(6): 04015016.
- 9. Mohajerani A., Bakaric J., Jeffrey-Bailey T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete // Journal of environmental management. 2017. V. 197. P. 522-538.
- 10. Oke T.R. The energetic basis of the urban heat island // Quarterly journal of the royal meteorological society. 1982. V. 108 (455). P. 1-24.
- 11. Sass J.H., Lachenbruch A.H., Munroe R.J. Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations // Journal of geophysical research. 1971. V. 76 (14). P. 3391-3401.
- 12. Sepaskhah A.R., Boersma L. Thermal conductivity of soils as a function of temperature and water content // Soil Science Society of America Journal. 1979. V. 43 (3). P. 439-444.