- PII
- S0869780925020085-1
- DOI
- 10.31857/S0869780925020085
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 81-92
- Abstract
- During routine measurements of radon flux density for construction purposes in Moscow, the areas were found with abnormally high radon flux densities exceeding 400 mBq m-2 s-1. These values far exceed those average values around 24-40 mBq m-2 s-1 for local sandy and clay soils, which is compounded with the fact that the area under study doesn’t contain any active faults or natural soils rich in uranium. Therefore, the question arises, whether these high values are of technogenic or natural origin. This paper uses machine learning algorithms to find the answer to these questions. Machine learning algorithms including random forest trees and artificial neural networks were used to try and predict radon flux density anomalies on a city scale. Predictors used included maps of geodynamically active areas, lineaments, distances to heavy rail infrastructure such as metro tunnels and surface-level rail. Additionally, normal predictors of radon such as 226Ra concentration in soil, quaternary soil type and elevation were used for the predictions. Predictions were made for both anomaly-free and anomaly included datasets. Training data included radon flux data for Moscow with both anomalous and background values which included 931 data points, of which 112 was classified as anomalous (more than 400 mBq m-2 s-1). Based on the predictions obtained, factors which influence radon flux density and those that may produce anomalous values were underlined.
- Keywords
- радон машинное обучение Random Forest плотность потока радона потенциальная радоноопасность прогноз
- Date of publication
- 25.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 20
References
- 1. Макаров В.И., Дорожко А.Л., Макарова Н.В., Макеев В.М. Современные геодинамически активные зоны платформ // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2007. № 2. С. 99-110.
- 2. Макарова Н.В., Макеев В.И., Дорожко А.Л. и др. Геодинамические системы и геодинамически активные зоны Восточно-Европейской платформы // Бюл. Моск. обществава испытателей природы. Отд. геол. 2016. Т. 91. Вып. 4-5. С. 9-22.
- 3. Маренный А.М., Цапалов А.А., Микляев П.С., Петрова Т.Б. Закономерности формирования радонового поля в геологической среде. М.: “Перо”, 2016. 394 с.
- 4. Микляев П.С., Макаров В.И., Дорожко А.Л. и др. Радоновое поле Москвы // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2013. № 2. С. 172187.
- 5. Осипов В.И. Крупномасштабное геологическое картирование территории г. Москвы // Геоэкология. Инженерная геология, гидрогеология, геокриология. 2011. № 3. С. 195-197.
- 6. Bossew P., Cinelli G., Ciotoli G.; Crowley Q.G. et al. Development of a Geogenic Radon Hazard Index - Concept, History, Experiences // Int. J. Environ. Res. Public Health. 2020. 17: 4134. https://doi.org/10.3390/ijerph17114134
- 7. Di Carlo C., Maiorana A., Bochicchio F. Indoor Radon: Sources, Transport Mechanisms and Influencing Parameters. 2023.IntechOpen. https://doi.org/10.5772/intechopen.111710
- 8. Friedman J.H. Multivariate adaptive regression splines (with discussion). The Annals of Statistics. 1991. 19:1-141.
- 9. Gavriliev S., Petrova T., Miklyaev P. Factors influencing radon transport in the soils of Moscow // Environ Sci Pollut Res. 2022, no. 29, pp. 88606-88617. https://doi.org/10.1007/s11356-022-21919-y
- 10. Gavriliev S., Petrova T., Miklyaev P., Karfidova, E. Predicting radon flux density from soil surface using machine learning and GIS data // Science of The Total Environment. 2023. 903:166348, https://doi.org/10.1016/j.scitotenv.2023.166348
- 11. ICRP. Radiological protection against radon exposure. 2014. No. 126. https://www.icrp.org/publication.asp?id=ICRP%20Publication%20126
- 12. Janik M., Bossew P., Kurihara O. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data // Science of The Total Environment. 2018. V. 630. P. 1155-1167.
- 13. Mair J., Petermann E., Lehné R., Henk A. Can neotectonic faults influence soil air radon levels in the Upper Rhine Graben? An exploratory machine learning assessment // Science of The Total Environment. 2024. 956:177179. https://doi.org/10.1016/j.scitotenv.2024.177179
- 14. Miklyaev P., Petrova T., Marennyy A, et al. High seasonal variations of the radon exhalation from soil surface in the fault zones (Baikal and North Caucasus regions) // Journal of Environmental Radioactivity, 2020. 219, 106271. https://doi.org/10.1016/j.jenvrad.2020.106271
- 15. Miklyaev P.S., Petrova T.B., Shchitov D.V., Sidyakin P.A. et al. Radon transport in permeable geological environments // Sci. Total Environ. 2022. V. 852:158382. https://doi.org/10.1016/j.scitotenv.2022.158382.
- 16. Nazaroff W.W. Radon transport from soil to air // Reviews of Geophysics. 1992. 30(2):137. https://doi.org/10.1029/92rg00055
- 17. Osipov V.I., Burova V.N., Zaikanov V.G., Molodykh I.I. et al. A map of large-scale (detail) engineering geological zoning of Moscow territory // Water Resources. 2012. 39(7):737-746. https://doi.org/10.1134/S0097807812070093
- 18. Petermann E., Bossew P., Kemski J. et al. Development of a high-resolution indoor radon map using a new machine learning- based probabilistic model and German radon survey data // Environ. Health Perspect. 2024.132 (9):97009. https://doi.org/10.1289/EHP14171
- 19. Petermann E., Meyer H., Nussbaum M., Bossew P. Mapping the geogenic radon potential for Germany by Machine Learning. 2020. https://doi.org/10.5194/egusphere-egu2020-8501
- 20. Rezaie F., Panahi M., Bateni S. M., Kim S. et al. Spatial modeling of geogenic indoor radon distribution in Chungcheongnamdo, South Korea using enhanced machine learning algorithms // Environment International. 2023. 171:107724. https://doi.org/10.1016/j.envint.2022.107724
- 21. Timkova J., Fojtikova I., Pacherova P. Bagged neural network model for prediction of the mean indoor radon concentration in the municipalities in Czech Republic // Journal of Environmental Radioactivity. 2017. 166:398- 402. https://doi.org/10.1016/j.jenvrad.2016.07.008
- 22. Torkar D., Zmazek B., Vaupotič J., Kobal I. Application of artificial neural networks in simulating radon levels in soil gas // Chemical Geology. 2010. 270(1-4):1-8. https://doi.org/10.1016/j.chemgeo.2009.09.017
- 23. Tsapalov A., Kovler K., Miklyaev P. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface // Journal of Environmental Radioactivity. 2016. 160:28-35. https://doi.org/10.1016/j.jenvrad.2016.04.016
- 24. UNSCEAR. Sources and effects of ionizing radiation. 2000. No. 1. https://www.unscear.org/unscear/en/publications/2000_1.html. Accessed 15 Apr 2022
- 25. WHO Handbook on indoor radon. WHO Handbook on Indoor Radon: a public health perspective. Hajo Zeeb and Ferid Shannoun (eds), Geneva, WHO Press, 2009.